* Rinaldi Munir/IF2120 Matematika Diskrit * Latihan 3 Jika A1, A2, …, An masing-masing adalah himpunan, buktikan dengan induksi matematik hukum De Morgan rampatan berikut: Rinaldi Munir/IF2120 Matematika Diskrit * Buktikan dengan induksi matematik bahwa n5 - n habis dibagi 5 untuk n bilangan bulat positif.

MatematikaALJABAR Kelas 11 SMAInduksi MatematikaPenerapan Induksi MatematikaPenerapan Induksi MatematikaInduksi MatematikaALJABARMatematikaRekomendasi video solusi lainnya0252Buktikan bahwa 3 + 7 + 11 + ... + 4n-1 = n2n + 1 untu...0339Dengan induksi matematika, buktikan bahwa 1+3+5+7+...+2n...0455Dengan induksi matematik, buktikan bahwa 12+23+...+n...Teks videoPoster adalah untuk semoga asli n lebih dari 1 buktikan bahwa n + 2 n adalah kelipatan 3 kita gunakan metode induksi matematika untuk menyelesaikannya langkah-langkah induksi matematika adalah pertama buktikan sampai 1 pernyataan benar kedua pastikan untuk n = k pernyataan benar ketika buktikan untuk n = k + 1 pernyataan jangan bantu antara kedua Langkah pertama untuk bersatu kita masukkan nilai tambah 1 berarti 1 ditambah 2 dikali 1 = 33 habis dibagi 3. Berarti sudah terbukti benar, Langkah kedua kita asumsikan untuk n = k merupakan kelipatan 3 berarti kagumi + 2 k = 3 x 1 nilai P ketika kita berarti k + 1 kubik ditambah 2 dikali x + 1 = x kubik + 3 x kuadrat + 3 + 1 + 2 K + 2 Tiga kelompok = X kubik + 2 k + 3 k kuadrat + 3 k + 3 k b. Berapakah berdasarkan angka kedua sama dengan 3 p q = 3 p + 35 + 1 + 3 = 3 x 3 + x + 1 + 1 ini habis dibagi 3 berarti itu benar karena pernyataan benar untuk ketiga tersebut berarti pernyataan ini berdasarkan induksi matematika sudah benar
β€’ Akan dibuktikan bahwa (n+1)2 β‰₯ 2(n+1) + 1 Bukti: (n+1)2 = n2 + 2n + 1 β‰₯ (2n + 1) + 2n + 1= (2n + 2) + 2n = 2 (n+1) + 2n Karena untuk nβ‰₯4, 2n β‰₯ 1, maka : 2(n+1) + 2n β‰₯ 2(n+1) + 1 jadi, (n+1) β‰₯ 2(n+1) +1(terbukti) C. PRINSIP INDUKSI KUAT Misal p(n) adalah suatu pernyataan yang menyangkut bilangan bulat.
Dengan induksi matematika buktikan bahwa n3 + 3n2 + 2n habis dibagi 3 untuk semua n bilangan asli!Jawab1. Untuk n = 1 13 + 312 + 21 = 1 + 3 + 2 = 6 = 3 . 2 habis dibagi 3 Jadi, rumus benar untuk n = 1 atau S1 Andaikan Sn benar untuk n = k maka diperoleh k3 + 3k2 + 2k habis dibagi oleh 3. Oleh karena k3 + 3k2 + 2k habis dibagi oleh 3, maka k3 + 3k2 + 2k dapat dinyatakan sebagai k3 + 3k2 + 2k = 3p, dengan p sembarang bilangan asli. Akan ditunjukkan bahwa Sn benar untuk n = k + 1. Untuk n = k + 1 diperolehJadi, n3 + 3n2 + 2n habis dibagi oleh 3 berlaku untuk semua n bilangan lupa komentar & sarannyaEmail nanangnurulhidayat terus OK! 😁
𝑛3 + 5𝑛 adalah kelipatan 6 untuk setiap bilangan asli n. b. Jumlah pangkat 3 dari setiap tiga bilangan asli berurutan habis dibagi 9. c. 32𝑛 βˆ’ 1 habis dibagi 8 untuk setiap bilangan asli n. d. 𝑛2 (𝑛 + 1)2 habis dibagi 4 untuk setiap bilangan asli n. e. 52𝑛 βˆ’ 1 habis dibagi 3 untuk setiap bilangan asli n. f. 9𝑛 βˆ’ 2𝑛
Pembuktian * n = 1nΒ² + n = 21 + 1 = 22 = 2Terbukti Benar 2 habis dibagi 2 *n = k kΒ² + k = 2*n = k + 1 k + 1 Β² + k + 1 = kΒ² + 2k + 1 + k + 1= kΒ² + 3k + 2 = kΒ² + k + 2k + 2= 2 k + 1 Terbukti nΒ² + n habis dibagi 2Soal Serupa Pelajaran MatematikaMateri Induksi Matematika Barisan dan Deret KTSP Kelas XII SMAKata Kunci Habis dibagi 2Kode Soal 12 . 2 . 7backtoschoolcampaign kΒ²+k nya sudah membuktikan di n=k karena kalo cuma 2k+1 itu hasilnya cuma 2k + 2 kak itu k^2 + k nya dikemanain D Untuk semua n β‰₯ 1, tunjukkan bahwa n3 + 2n adalah kelipatan 3. E. Tunjukkan bahwa setiap bilangan bulat yang terbentuk dari 3n angka yang sama selalu habis dibagi oleh 3. n (misalnya, 222 dan 777 habis dibagi 3; 222 222 222 dan 555 555 555 habis dibagi 9). F. Untuk membayar biaya pos sebesar n rupiah (n β‰₯ 8) selalu dapat digunakan Induksi matematika merupakan sebuah metode pembuktian deduktif yang dipakai guna membuktikan pernyataan matematika yang berkaitan dengan himpunan bilangan yang terurut rapi well ordered set.Bilangan tersebut contohnya bilangan asli maupun himpunan bagian tak kosong dari bilangan kalian catat bahwa induksi matematika hanya dipakai untuk mengecek atau membuktikan kebenaran dari sebuah pernyataan atau rumus. Dan induksi matematika tidak untuk menurunkan matematika tidak bisa dipakai untuk menurunkan atau menemukan ini adalah beberapa contoh dari pernyataan matematika yang bisa dibuktikan kebenarannya pada induksi matematikaPn 2 + 4 + 6 + … + 2n = nn + 1, n bilangan asli Pn 6n + 4 habis dibagi 5, untuk n bilangan asli. Pn 4n b > c β‡’ a > c atau a 0 β‡’ ac b dan c > 0 β‡’ ac > bc3. a b β‡’ a + c > b + cSebelum kita masuk ke dalam contoh soal, ada baiknya apabila kita latihan terlebih dahulu dengan memakai sifat-sifat di atas guna menunjukkan implikasi β€œapabila Pk benar maka Pk + 1 juga benar”.Contoh 1Pk 4k 1 + 2nJawabPn 3n > 1 + 2nAkan dibuktikan Pn berlaku untuk n β‰₯ 2, n ∈ NLangkah awalAkan menunjukan bahwa P2 bernilai benar, yakni 32 = 9 > 1 + = 5Sehingga, P1 bernilai benarLangkah induksiIbaratkan bahwa Pk benar, yakni 3k > 1 + 2k, k β‰₯ 2Akan menunukan bahwa Pk + 1 juga benar, yakni 3k+1 > 1 + 2k + 13k+1 = 33k 3k+1 > 31 + 2k karena 3k > 1 + 2k 3k+1 = 3 + 6k 3k+1 > 3 + 2k karena 6k > 2k 3k+1 = 1 + 2k + 2 3k+1 = 1 + 2k + 1Sehingga, Pk + 1 juga bernilai benarBerdasarkan konsep dari induksi matematika, terbukti bahwa Pn berlaku untuk masing-masing bilangan asli n β‰₯ 4Buktikan untuk masing-masing bilangan asli n β‰₯ 5 akan berlaku 2n βˆ’ 3 3nJawabPn n + 1! > 3nAkan dibuktikan bahwa Pn berlaku untuk n β‰₯ 4, n ∈ NLangkah awalAkan menunjukan P4 bernilai benar 4 + 1! > 34 ruas kiri 5! = = 120 ruas kanan 34 = 81Sehingga, P1 benar Langkah induksiIbaratkan bahwa Pk bernilai benar, yaknik + 1! > 3k , k β‰₯ 4Akan ditunjukkan Pk + 1 juga benar, yaitu k + 1 + 1! > 3k+1k + 1 + 1! = k + 2! k + 1 + 1! = k + 2k + 1! k + 1 + 1! > k + 23k sebab k + 1! > 3k k + 1 + 1! > 33k sebab k + 2 > 3 k + 1 + 1! = 3k+1Sehingga, Pk + 1 juga bernilai konsep dari induksi matematika, terbukti bahwa Pn berlaku untuk masing-masing bilangan asli n β‰₯ ulasan singkat kali ini yang dapat kami sampaikan. Semoga ulasan di atas dapat kalian jadikan sebagai bahan belajar kalian.
Terlihat bahwa : (n3 + 2n) adalah kelipatan 3 dari hipotesis awal langkah 2 Sedangkan bahwa : 3(n2 + n + 1) jelas merupakan kelipatan 3 juga, sehingga n3 + 2n adalah kelipatan 3 terbukti benar. INDUKSI MATEMATIKA-Contoh Contoh 4: Buktikan bahwa 22n - 1 habis dibagi 3 untuk semua bilangan bulat n β‰₯ 1. Jawab Langkah 1. Untuk n = 1, didapat 22
terjawab β€’ terverifikasi oleh ahli Jawaban Berupa Lampiran - Kelas XI [Kurikulum 2013 Revisi] Mata Pelajaran Matematika Kode Mapel 2 Kategori Bab 1 - Induksi matematika [Kurikulum 2013 Revisi] Kode kategorisasi [Kelas 11, Kode Mapel 2] Soal serupa dapat dilihat di, backtoschoolcampaign
tersebut. 2. Buktikan dengan induksi matematik bahwa n5 - n habis dibagi 5 untuk n bilangan bulat. positif. 3. Buktikan melalui induksi matematik bahwa 1 (2)+2 (3)+…+n (n+1) = [n (n+1) (n+2)]3 untuk. 4. Sebuah kios penukaran uang hanya mempunyai pecahan uang senilai Rp 2.000,- dan Rp. 5.000,- Untuk uang senilai berapa saja yang dapat
Induksi Matematika Prinsip, Pembuktian Deret, Keterbagian, Persamaan dan Contoh Soal – Apakah itu Induksi Matematika ?Pada kesempatan kali ini akan membahas tentang Bola Kasti beserta hal-hal yang melingkupinya. Mari kita simak pembahasannya pada artikel di bawah ini untuk lebih dapat memahaminya. Induksi matematika adalah sebuah metode pembuktian deduktif yang dipakai membuktikan pernyataan matematika yang berkaitan dengan himpunan bilangan yang terurut rapi . Bilangan tersebut contohnya bilangan asli maupun himpunan bagian tak kosong dari bilangan matematika hanya dipakai untuk mengecek atau membuktikan kebenaran dari sebuah pernyataan atau rumus. Dan induksi matematika tidak untuk menurunkan matematika tidak bisa dipakai untuk menurunkan atau menemukan rumus. Berikut ini adalah beberapa contoh dari pernyataan matematika yang bisa dibuktikan kebenarannya pada induksi matematika Pn 2 + 4 + 6 + … + 2n = nn + 1, n bilangan asli Pn 6n + 4 habis dibagi 5, untuk n bilangan asli. Pn 4n b > c β‡’ a > c atau a 0 β‡’ ac b dan c > 0 β‡’ ac > bc 3. a b β‡’ a + c > b + c Sebelum kita masuk ke dalam contoh soal, ada baiknya apabila kita latihan terlebih dahulu dengan memakai sifat-sifat di atas guna menunjukkan implikasi β€œapabila Pk benar maka Pk + 1 juga benar”. Contoh Pk 4k 1 + 2n Jawab Pn 3n > 1 + 2n Akan dibuktikan Pn berlaku untuk n β‰₯ 2, n ∈ N Akan menunjukan bahwa P2 bernilai benar, yakni 32 = 9 > 1 + = 5 Sehingga, P1 bernilai benar Ibaratkan bahwa Pk benar, yakni 3k > 1 + 2k, k β‰₯ 2 Akan menunukan bahwa Pk + 1 juga benar, yakni 3k+1 > 1 + 2k + 1 3k+1 = 33k 3k+1 > 31 + 2k karena 3k > 1 + 2k 3k+1 = 3 + 6k 3k+1 > 3 + 2k karena 6k > 2k 3k+1 = 1 + 2k + 2 3k+1 = 1 + 2k + 1 Sehingga, Pk + 1 juga bernilai benar Berdasarkan konsep dari induksi matematika, terbukti bahwa Pn berlaku untuk masing-masing bilangan asli n β‰₯ 2. Buktikan bahwa Pembahasan Langkah 1 terbukti Langkah 2 n = k Langkah 3 n = k + 1 Dibuktikan dengan kedua ruas dikali 2k dimodifikasi menjadi 2k+1 terbukti Soal 4 Buktikan untuk masing-masing bilangan asli n β‰₯ 5 akan berlaku 2n βˆ’ 3 3n Jawab Pn n + 1! > 3n Akan dibuktikan bahwa Pn berlaku untuk n β‰₯ 4, n ∈ N Akan menunjukan P4 bernilai benar 4 + 1! > 34 ruas kiri 5! = = 120 ruas kanan 34 = 81 Sehingga, P1 benar Ibaratkan bahwa Pk bernilai benar, yakni k + 1! > 3k , k β‰₯ 4 Akan ditunjukkan Pk + 1 juga benar, yaitu k + 1 + 1! > 3k+1 k + 1 + 1! = k + 2! k + 1 + 1! = k + 2k + 1! k + 1 + 1! > k + 23k sebab k + 1! > 3k k + 1 + 1! > 33k sebab k + 2 > 3 k + 1 + 1! = 3k+1 Sehingga, Pk + 1 juga bernilai benar. Berdasarkan konsep dari induksi matematika, terbukti bahwa Pn berlaku untuk masing-masing bilangan asli n β‰₯ 4. Demikianlah ulasan dari tentang Induksi Matematika , semoga dapat menambah wawasan dan pengetahuan kalian. Terimakasih telah berkunjung dan jangan lupa untuk membaca artikel lainnya
4𝑛 βˆ’ 1 habis dibagi 3 b. 8𝑛 βˆ’ 3𝑛 habis dibagi 5 c. 𝑛3 + 5𝑛 adalah faktor dari 6 4. Prove that π‘₯ 𝑛 βˆ’ 𝑦 𝑛 is divisible by π‘₯ βˆ’ 𝑦, where π‘₯ βˆ’ 𝑦 β‰  0. 5. Prove that 52(𝑛+1) βˆ’ 25 is divisible by 75, where 𝑛 β‰₯ 0. Buktikan bahwa π‘Ž2𝑛 βˆ’ 𝑏 2𝑛 habis dibagi oleh (π‘Ž + 𝑏) 12
MatematikaALJABAR Kelas 11 SMAInduksi MatematikaPenerapan Induksi MatematikaDiketahui P n n^3 + 3n^2 + 2n habis dibagi 3 untuk n bilangan asli. Jika P n berlaku untuk n = k+ 1, maka P n dapat ditulis sebagai..Penerapan Induksi MatematikaInduksi MatematikaALJABARMatematikaRekomendasi video solusi lainnya0252Buktikan bahwa 3 + 7 + 11 + ... + 4n-1 = n2n + 1 untu...0339Dengan induksi matematika, buktikan bahwa 1+3+5+7+...+2n...0455Dengan induksi matematik, buktikan bahwa 12+23+...+n...Teks videodisini kita punya soal diketahui P N = N ^ 3 + 3 n kuadrat + 2 n habis dibagi 3 untuk n bilangan asli n berlaku untuk n = k + 1 maka p n dapat ditulis sebagai jika dijumpai soal seperti ini maka langkah pertama kita misalkan n = 3 diperoleh p k = k ^ 3 + 3 k kuadrat + 2 k kedua di mana yang diminta adalah n = k + 1 maka N = K + 1 diperoleh p k + 1 = k + 1 ^ 3 + 3 x dengan x + 1 kuadrat + 2 x + 1 kemudian k + 1 kita keluarkan k + 1 dikali dengan K + 1 kuadrat + 3 x dengan x + 1 + 2, maka = k + 1 x dengan x + 1 kuadrat adalah k kuadrat + 2 k + 1 + 3 X dengan x + 1 adalah 3 k + 3 + 2 maka diperoleh = x + 1 x dengan x kuadrat + 5 k + 6 = k + 1 x kuadrat + 5 x + 6 bisa kita faktorkan yaitu K + 2 x dengan x + 3 sehingga diperoleh k + 1 dikali dengan + 2 dikali dengan K + 3 jawabannya adalah C sampai jumpa di pertanyaan berikutnya
Karena199 tidak habis dibagi 2, 3, 5, 7, 11, dan 13, maka 199 adalah bilangan prima. β€’ Terdapat metode lain yang dapat digunakan untuk menguji keprimaan suatu bilangan bulat, yang terkenal dengan Teorema Fermat.

Mahasiswa/Alumni Universitas Negeri Malang17 April 2022 1346Halo Moeh, kakak bantu jawab ya .. jawaban terbukti bahwa n^3+2n habis dibagi 3 Ingat pembuktian dengan induksi matematika Misalkan Pn adalah suatu sifat yang di definisikan bilangan asli maka tunjukkan bahwa 1 P1 benar 2 Jika Pk benar maka Pk+1 juga bernilai benar Buktikan n^3+2n habis dibagi 3 , untuk setiap n bilangan asli Maka 1 misal n = 1 = n^3+2n = 1^3+21 = 1 + 2 = 3 -> habis dibagi tiga 2 misal n = k = n^3+2n = k^3+2k = [k^3+2k] karena nilai [k^3+2k] habis dibagi 3, maka merupakan bilangan kelipatan 3 3 misal n = K+1 = n^3+2n = k+1^3+2k+1 = k+1^3+2k+1 = k^3 + 3k^2 + 3k + 1 + 2k + 2 = k^3 + 2k + 3k^2 + 3k + 1 + 2 = k^3 + 2k + 3k^2 + 3k + 3 kelompokkan = [k^3 + 2k] + [3k^2 + 3k + 3] merujuk pada poin no. 2, nilai k^3 + 2k habis dibagi 3 nilai [3k^2 + 3k + 3], karena setiap sukunya berkoefisien 3, maka nilai tersebut juga habis dibagi 3, sehingga untuk n = k+1 terbukti bilangan kelipatan 3 dan habis dibagi 3 Jadi, terbukti n^3+2n habis dibagi 3 , untuk setiap n bilangan asli

Perbandingandi negara maju lainnya termasuk Swedia, 1 berbandin1 2,8; Jerman Barat, 1 berbanding 3,01 Perancis, 1 berbanding 3,1; dan Kerajaan Inggris 1 berbanding 3,9.Sebagai pembanding, prbandingan untuk J.p*g adalah I berbanding 5,7; Spanyol, 1 berbanding 6,1; Yunani, 1 berbanding 15; Rusia, 1 berbanding 46; dan negara Cina, I berbanding 24
Kelas 11 SMAInduksi MatematikaPrinsip Induksi MatematikaPrinsip Induksi MatematikaInduksi MatematikaALJABARMatematikaRekomendasi video solusi lainnya0103sigma n=1 4 2n+3=. . . .0357Buktikan melalui induksi matematik bahwa 1/12+1/...0456Buktikan melalui induksi matematik bahwa 1+a+a^2+...+ ...0518Buktikan melalui induksi matematik bahwa 3+ videoHalo koblenz untuk menjawab soal ini kita akan gunakan metode induksi matematika jadi langkah pertama yang kita lakukan adalah membuktikan bahwa untuk N = 1 itu benar Jadi kita subtitusi N = 1 maka kita dapat 1 * 1 ^ 2 + 2 nah ini = 1 X 1 + 23 = 3 nah 3 ini Tentunya habis dibagi 3 oke Saya kira jelas ya Jadi untuk N = 1 itu benar jadi langkah pertama kita benar selanjutnya kita coba ke langkah yang ke-2 nah disini kita asumsikan bahwa untuk n = k Benar kita asumsikan Nah kita subtitusi n = k jadi k dikali kabar pangkat 2 ditambah 2 ini habisTiga ya Nah selanjutnya kita akan Tunjukkan bahwa untuk n = k ditambah satu itu benar Jadi kita subtitusi n = x + 1 jadi kita dapatkan ditambah satu ini dikali x ditambah 1 pangkat 2 kemudian ditambah 2. Nah ini kita jabarkan jadi = k ditambah 1 nah ini dikali x ditambah 1 pangkat 2 kita dapat kabar ^ 2 + 2 k + 1. Nah ini ditambah 2 Oke Nah selanjutnya kita coba Sederhanakan jadi = k ditambah 1 kemudian dikali x kuadrat ditambah 2 k + 1 + 23 nah, kemudian ini kita coba kali jadi kita dapat = k dikali x kuadrat Kak berpangkat 3 k dikali 2 kah kita dapat 2 k berpangkat 2 k dikali 3 kita dapat 3 k 1 * x kuadrat itu k kuadrat 1 * 2 k kita dapat 2 akar 1 dikali 3 kita dapat 3 Nah dari sini bisa kita selesaikan jadi = nah untuk a pangkat 3 ditambah 2 kah ini bisa kita kelompokkan jadi saya tulis dulu seperti ini nah kemudian ditambah 2 k kuadrat ditambah akar kuadrat itu 3 k kuadrat selanjutnya 3 k ditambah 3 ya. Nah kemudian pangkatDitambah 2 k itu bisa kita faktorkan jadi k dikali x pangkat 2 ditambah 2 ditambah 3 k kuadrat ditambah 3 x ditambah 3 ini kita keluarkan 3 nya jadi yang tersisa tinggal kabur pangkat 2 ditambah x ditambah 1 Oke Nah dari sini bisa kita lihat bahwa untuk Kak kalikah berpangkat 2 + 2 ini habis dibagi 3 ya ini Berdasarkan pernyataan pada Langkah kedua yaitu untuk n = kah Nah ini toh ini telah kita misalkan kita asumsikan bahwa ke adik x k ^ 2 + 2 itu benar artinya habis dibagi 3 seperti itu berarti kan 3 x k ^ 2 + x + 1 ini juga jelas habis dibagi 3 karena kelipatan 3 ya. Berarti kan ini 3 kali sesuatuoke, nah Artinya kita dapat bahwa untuk n = k ditambah satu ini juga benar ya karena langkah pertama dan kedua itu benar maka untuk n dikali n ^ 2 + 2 benar habis dibagi 3 untuk n bilangan asli Oke saya kira cukup untuk pertanyaan ini sampai jumpa pada Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
.
  • cyqr6rq80a.pages.dev/494
  • cyqr6rq80a.pages.dev/985
  • cyqr6rq80a.pages.dev/151
  • cyqr6rq80a.pages.dev/55
  • cyqr6rq80a.pages.dev/271
  • cyqr6rq80a.pages.dev/253
  • cyqr6rq80a.pages.dev/658
  • cyqr6rq80a.pages.dev/783
  • cyqr6rq80a.pages.dev/888
  • cyqr6rq80a.pages.dev/456
  • cyqr6rq80a.pages.dev/599
  • cyqr6rq80a.pages.dev/105
  • cyqr6rq80a.pages.dev/926
  • cyqr6rq80a.pages.dev/451
  • cyqr6rq80a.pages.dev/318
  • n3 2n habis dibagi 3